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Modelling and Proving in Event-B

Main purpose of modelling is reasoning

Models determine what is to be formally proved
Proof obligations are automatically generated
Tool support is essential

Refinement is a proof technique

vV vV v v.Vv Y

Models and proof obligations correspond closely

Proof
Obligations

Modelling
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A Simple Example of an Event-B Model

» Invariants

invl : auth € Person < Room
A person is authorised to be in certain rooms
inv2 : wn € Person +— Room
A person can be at most in one room
invd : in C auth
A person can only be in rooms where he is authorised to be

» Events

enter
any
pr
when
grdl : p ¢ dom(in) Person is not in building
grd2 : p—r € auth Person is authorised to enter room
then
actl : in:=inU{p—r} i
end Wi HEINRICH HEINE
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Proof Obligations of the Event-B Model

» Preservation of invariant inv3 by event enter

» Name of proof obligation

“enter /inv3/INV"

» Sequent
auth € Person < Room invariant tnvl
in € Person -+ Room invariant inv2
in C auth invariant inv3
p ¢ dom(in) guard grdl
p— 1 € auth guard grd2
inU{p—r} Cauth modified (actl) invariant inv3

» Simple correspondence between proof obligations and model
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The Rodin Tool — Modelling

event search search/i1/INV
when f(i) = v then :
ke i search/i2/INV
end inc/i1/INV

event inc

when f(i) < v then inc/i2/INV

p =i + Model Editor dec/i1/INV
il dec/i2/INV
end
event dec
whetri v f 1/(1) then Sl
:.’ o ([/) 1) s 9 Obligations

Error: 'x' is not a variable
Messages
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The Rodin Tool — Proving

p € 1.N v search/i1/INV
]f(<\ search/i2/INV
J) <wv

inc/i1/INV
inc/i2/INV
Premises dec/i1/INV
dec/i2/INV

Proof
Obligations

i+1 € 1..N
Conclusion

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF




The Rodin Tool — Animation (ProB)

Current
State of EEnVZt:?Sd History
the Model

Graphical View of the State(space)
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Screen Shot of the Rodin Tool — Modelling
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Starting From a Perfect Solutions

» Usually we present (perfect) solutions to selected problems
» This does not show how the solution was obtained

» |t creates the illusion there would be a perfect solution
» This fails to demonstrate a major strength of formal methods

» Support towards finding a good solution

» It is not just about correctness
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Finding a Good Solution

Problem solving (Pdlya, Lakatos)

» Think about how to approach the problem

v

Start with a model that appears reasonable

v

Make mistakes

v

Analyse the model

v

Think again

v

Improve the model

v

Make mistakes

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE



Contents

Explaining Mistakes

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF




Analysing and Explaining Mistakes

v

Proof is a good tool for analysing inconsistent models

v

It points to the place where the inconsistency occurs

v

It does not serve well for explaining inconsistencies

v

Useful tools for explanation:

» Model checking: counter examples

» Animation: see “how it happens”

ProB can also be used for this

v
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Example of requirements

P1 : The system consists of persons and one building.

P2 : The building consists of rooms and doors.

P3 : Each person can be at most in one room.

P4 : Each person is authorised to be in certain rooms (but not others).

P5 : Each person is authorised to use certain doors (but not others).

P6 : Each person can only be in a room where the person is authorised to be.

P7 : Each person must be able to leave the building from any room where the person is authorised to be.

P8 : Each person can pass from one room to another if there is a door connecting the two rooms and the
person has the proper authorisation.

P9 : Authorisations can be granted and revoked.

» Example provides room for misunderstanding
» Unlike a sequential program, for instance

» Model is much simplified
from “Event Driven System Construction” by Abrial
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Getting Started

» the abstract machine models room authorisations

» the concrete machine models room and door authorisations

Abstract invariants

ol : arm € Person < Room Property P4
inv2 : Person x {0} C arm
w3 : loc € Person — Room Property P3

mvd : loc C arm Property P6
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Revoking an Authorisation
P9 Authorisations can be granted and revoked.

revoke
any p r when
grdl : p € Person
grd2 : p—r ¢ loc
then
actl : arm := arm \ {p — r}
end
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How the model looks in Rodin
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What have to prove:

Event revoke preserves invariant inv2:

Person x {0} C arm Invariant inv2
p € Person Guard grdl
p— r & loc Guard grd2

Person x {0} C arm \ {p — r} Modified invariant inv2
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How the proof obligation looks in Rodin
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What have to prove:

Event revoke preserves invariant inv2:

Person x {0} C arm Invariant inv2
p € Person Guard grdl
p— r & loc Guard grd2

Person x {0} C arm \ {p — r} Modified invariant inv2

» Is it (not) provable?
» Why?
» Our aim is to improve the model

» Not to make the proof obligation “pass”
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Change of perspective

» Look at a problematic state trace
(leading to an inconsistent state)

arm = {P — O}
loc = {P ~ O}

grant(P, I)

arm = {Pw— O,P — I}
loc = {P+— O}

pass(P, I)

arm = {Pw~ O,P — I}
loc = {P—1I}
revoke(P, O)

arm = {Pw—1I}
Cloc = {P —1T}

» ProB alerts us that it violates invariant inv2:
Person x {0} C arm /"HEINRIH I:E!Ni
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How the counter example looks in ProB
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Refinement Animation
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We work on refinement animation similar to Brama
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Refinement Animation

Sketch of non-graphical display of state of refinement animation
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Conclusion

» Teach formal modelling how it is done

v

Teach incremental modelling

v

Teach how to improve a model in small increments

v

Teach making mistakes (how to profit from making mistakes)

v

Teach how to explain mistakes and to justify improvements

» Use a software tool like Rodin/ProB in class and in exercises

v

Getting a model right is not easy
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