How to Explain Mistakes

Stefan Hallerstede and Michael Leuschel

Universitat Diisseldorf

Teaching Formal Methods 2009
6 November 2009

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Contents

Event-B
Event-B in General Terms
Event-B by Example

Tool Support

Making Mistakes

Explaining Mistakes

On-going Work and Conclusion

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Contents

Event-B
Event-B in General Terms
Event-B by Example

P HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Contents

Event-B
Event-B in General Terms

P HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Modelling and Proving in Event-B

Main purpose of modelling is reasoning

Models determine what is to be formally proved
Proof obligations are automatically generated
Tool support is essential

Refinement is a proof technique

vV vV v v.Vv Y

Models and proof obligations correspond closely

Proof
Obligations

Modelling

& F 4

NRICH HEINE
UNIVERSITAT
DUSSELDORF

Contents

Event-B

Event-B by Example

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

A Simple Example of an Event-B Model

» Invariants

invl : auth € Person < Room
A person is authorised to be in certain rooms
inv2 : wn € Person +— Room
A person can be at most in one room
invd : in C auth
A person can only be in rooms where he is authorised to be

» Events

enter
any
pr
when
grdl : p ¢ dom(in) Person is not in building
grd2 : p—r € auth Person is authorised to enter room
then
actl : in:=inU{p—r} i
end Wi HEINRICH HEINE

UNIVERSITAT
DUSSELDORF

Proof Obligations of the Event-B Model

» Preservation of invariant inv3 by event enter

» Name of proof obligation

“enter /inv3/INV"

» Sequent
auth € Person < Room invariant tnvl
in € Person -+ Room invariant inv2
in C auth invariant inv3
p ¢ dom(in) guard grdl
p— 1 € auth guard grd2
inU{p—r} Cauth modified (actl) invariant inv3

» Simple correspondence between proof obligations and model

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Contents

Tool Support

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

The Rodin Tool — Modelling

event search search/i1/INV
when f(i) = v then :
ke i search/i2/INV
end inc/i1/INV

event inc

when f(i) < v then inc/i2/INV

p =i + Model Editor dec/i1/INV
il dec/i2/INV
end
event dec
whetri v f 1/(1) then Sl
:.’ o ([/) 1) s 9 Obligations

Error: 'x' is not a variable
Messages

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

The Rodin Tool — Proving

p € 1.N v search/i1/INV
]f(<\ search/i2/INV
J) <wv

inc/i1/INV
inc/i2/INV
Premises dec/i1/INV
dec/i2/INV

Proof
Obligations

i+1 € 1..N
Conclusion

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

The Rodin Tool — Animation (ProB)

Current
State of EEnVZt:?Sd History
the Model

Graphical View of the State(space)

o
P HEINRICH HEINE
UNIVERSITAT

DUSSELDORF

Screen Shot of the Rodin Tool — Modelling

1o B lar 9 .

Event-B - Secure_21_exp/.bum - Rodin Platform - /Users/stefan/Documents/Rodin/022209

7] [ENProB ¢ Proving [Resource ® Event-B

b Event-8 Explorer 53 E

@ou

|

= seaure_15
= secure 16
= secure 17

senezi o
@c))
¢ ¢ Proof Obligations
d

M
&0
Variables
<, Invariants
“, Bvents
@ Proo Obligatons.

D remauning NV
1 secure 21 fal
& secure 22

= Turingprog

I @ 1items selected

adoor ¢ Person = (RoomeRaomd
2 wp- adoor () € Door.
3 vp- donCadoor(s)) v {Outside} < aroonl{p}]
vo- aroon[{7}] € cCodoor(r))[{Outside}] v {Outside}
vo- adoor(p) € Cadoor()>~

theoren 6¢nn3 vp. odoor(swe = OutsidecdonCadoor(s))

thearen v adoor(s) € boor n CaroonL{pHIxaroon({r}1>

thearen v aroon[{s}] = cCadoor (o)) [{Outside lulOutside}
© theoren, o aron{p}]. - donadoor()).u. outsidel

oc(p)readoor(p) MOdEI Edltor

Clee s loc B (5 e
end

event addauth refines addhuth

where
Person
2 xey ¢ Doortadoor(s)
X ¢ donCadoor(z>) v {Outside}
with
then

12 adoor(p) = adoor(s) v Levy.pext

Tasks)

2. Rodin Problems &3 1 Properties|

© 1aentstier aron has not been sectares V] @SS Q) ges Secure 21 exp

1 error, 0 warnings, 0 infos (Filter matched 1 of 204 items)
Description TResmuree Patn Tocaion

o Errors (1 ten)
unkaoin

I

AR

HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Contents

Making Mistakes

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Starting From a Perfect Solutions

» Usually we present (perfect) solutions to selected problems
» This does not show how the solution was obtained

» |t creates the illusion there would be a perfect solution
» This fails to demonstrate a major strength of formal methods

» Support towards finding a good solution

» It is not just about correctness

P HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Finding a Good Solution

Problem solving (Pdlya, Lakatos)

» Think about how to approach the problem

v

Start with a model that appears reasonable

v

Make mistakes

v

Analyse the model

v

Think again

v

Improve the model

v

Make mistakes

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Contents

Explaining Mistakes

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Analysing and Explaining Mistakes

v

Proof is a good tool for analysing inconsistent models

v

It points to the place where the inconsistency occurs

v

It does not serve well for explaining inconsistencies

v

Useful tools for explanation:

» Model checking: counter examples

» Animation: see “how it happens”

ProB can also be used for this

v

P HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Example of requirements

P1 : The system consists of persons and one building.

P2 : The building consists of rooms and doors.

P3 : Each person can be at most in one room.

P4 : Each person is authorised to be in certain rooms (but not others).

P5 : Each person is authorised to use certain doors (but not others).

P6 : Each person can only be in a room where the person is authorised to be.

P7 : Each person must be able to leave the building from any room where the person is authorised to be.

P8 : Each person can pass from one room to another if there is a door connecting the two rooms and the
person has the proper authorisation.

P9 : Authorisations can be granted and revoked.

» Example provides room for misunderstanding
» Unlike a sequential program, for instance

» Model is much simplified
from “Event Driven System Construction” by Abrial

P HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Getting Started

» the abstract machine models room authorisations

» the concrete machine models room and door authorisations

Abstract invariants

ol : arm € Person < Room Property P4
inv2 : Person x {0} C arm
w3 : loc € Person — Room Property P3

mvd : loc C arm Property P6

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Revoking an Authorisation
P9 Authorisations can be granted and revoked.

revoke
any p r when
grdl : p € Person
grd2 : p—r ¢ loc
then
actl : arm := arm \ {p — r}
end

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

How the model looks in Rodin

vent-B - Secure_12/M.bum - Rodin Platform - /Users/stefan/Documents/Rodin =]
000 Ey B - S 12/M.b Rodin Platf /U /stefan/D /Rodin/022209
It H & |2 | O |8 Gl oy [BMProB ¢ Proving [(Resource & Event-B
b Event-8 Explorer 2 El@E ~-0)@Ma\8c |OM | =0
] J 9 variables aroom loc r
Qc | invariants
(c) @invl aroom e Person «» Room
@' E @inv2 loc e Person — Room
@inv3 Personx{Outside} ¢ aroom
@ Ta
e T @invé loc ¢ aroom
, thm
@M events
© Variables event INITIALISATION
. then
4 Invariants @act1 aroom = Person x {Outside}
4, Events @act2 loc = Person x {Outside}
@ Proof Obligations end
G INITIALISATION /inv1/INV event pass
G" INITIALISATION /inv2 /INV any p r
@" INITIALISATION /inv3 /INV where
G" INITIALISATION /inv4 /INV m@'“ p» 1 aroom
A ; en
@ pass/inv2 /INV @actl loc = loc = {p » r}
@ pass/inva/INV end
@" revoke/grd2 /WD e
@ revoke/inv1/INV “"::' 'E“r“k"
© revoke/inv3/INV P
© revoke/inv4/INV = F
2 Rodi ies| 2 b~ =0
@ grant/invL NV 2 Rodin Problems 52 _[Properties| % Tasks| S
@ grant/inv3/INV 20 errors, 0 warnings, 0 infos (Filter matched 20 of 210 items)
A . [Description 4 Resource Path [Loca
@ grant/inva /INV o
DN s 1 Errors (20 itens) 0
r v @ Abstract event addAuth not found N.bum Secure 12 | un;
¢ Y[||€ y<l»>

e
HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

What have to prove:

Event revoke preserves invariant inv2:

Person x {0} C arm Invariant inv2
p € Person Guard grdl
p— r & loc Guard grd2

Person x {0} C arm \ {p — r} Modified invariant inv2

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

How the proof obligation looks in Rodin

Inrdela-lsorlal I8

v 5]v 25 Gy S

[[BMProB ¢ Proving [(Resource © Event-B

T Proof Tree £ co|@M [0c [@amME = 0|k Event-BExplore 2\ = O
s|BE W || revoke/inv3/INv EI-1- 0
v (7) simplification rewrites [J [7)
@ Person x {Outside}caroom \ {p » @n
3 S

> © Variables
» <, Invariants

» %, Events

v @ Proof Obligations

leme¢n] @ INITIALISATION/inv1
0@ person x {Outside}caroon @ INITIALISATION/inv2
0 a peperson @ INITIALISATION/inv3
= @ INITIALISATION/inv
0 @ ~ loc(p)=r @ pass/inv2/INV
@ pass/inv4/INV
@ revoke/grd2 /WD
E0d @" revoke/inv1/INV
[¥ Goal v =B © revoke/inv3/INV
N - N @ revoke/inva4 /INV
@ Person x {Outside}caroom \ {p » r} o‘ granyimvL/INV
@ grant/inv3/INV
A /INV
% Proof Control £ [Statistics| (2. Rodin Problems| ®~°0)\g .
M AARTRURTE - 2 - BRI 4 TRCIONO R D o
iecure_13

m iecure_13a vy
s |iecure_14 +
BTG v |[TTE = BRI
0® Tt ligati
] New current obligation 4

S e
HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

What have to prove:

Event revoke preserves invariant inv2:

Person x {0} C arm Invariant inv2
p € Person Guard grdl
p— r & loc Guard grd2

Person x {0} C arm \ {p — r} Modified invariant inv2

» Is it (not) provable?
» Why?
» Our aim is to improve the model

» Not to make the proof obligation “pass”

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

Change of perspective

» Look at a problematic state trace
(leading to an inconsistent state)

arm = {P — O}
loc = {P ~ O}

grant(P, I)

arm = {Pw— O,P — I}
loc = {P+— O}

pass(P, I)

arm = {Pw~ O,P — I}
loc = {P—1I}
revoke(P, O)

arm = {Pw—1I}
Cloc = {P —1T}

» ProB alerts us that it violates invariant inv2:
Person x {0} C arm /"HEINRIH I:E!Ni

UNIVERSITAT
DUSSELDORF

How the counter example looks in ProB

o000

ProB - Secure_12/M.bum - Rodin Platform - /Users/stefan/Documents/Rodin/022209 =]
|4 |Qur | 4~ | 181+ 51+ v Dy [f [8MProB ¢ Proving [(Resource © Event-B
b oEve 2\ [LRodi| “O|@M R\ @C | = B[state 3 % = 8)(0 History 3 =g
PR &
B & et variables aroom loc Name Value | Previous value [Operations Loops | |
I J [Variables revoke(P,Outside)
. invariants aroom | {(PI->Inside)}| {(PI->Inside),(P|->Outside)} pass(P,Inside)
& secure 11 ~ @invl aroom € Person « Room i PlosInsid P insid
-~ @inv2 loc & Person — Room oc {(PI->Inside)} grant(P,Inside)
& Secure_12 @inv3 Personx{Outside} ¢ aroom revoke(P,Inside)
®c U @invd loc g aroom (roon)
@0
G E events
event INITIALISATION
@ then
@, thm . @actl aroom = Person x {Outside}
@M i @act2 loc = Person x {Outside}
@ N v end
event pass
] Operations &3 =8 any p r
n = h
fie L [00 [- ["Grd1 pw r « aroom
[Operation | Parameter(s) | then
revoke P, Outside g e e o
pass P, Inside
grant P, Inside event revoke

any p r
where
@grdl p e Person
@ard2 loc(p) # r

then L
@actl aroom = aroom \ {p » r} &
end v

i

HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Contents

On-going Work and Conclusion

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Refinement Animation

© O O Event-B - m3.bum - Rodin Platform - /Users/stefan/Applications/rodin_0.9.2.1/rodin.app/Co..

=ts] Q-+ | 47~ | Flash Server | &+ i+ %o Gov v I © Event-B

] Machine Graph View & Zoom out Zoom in = &
m3.bum m2.bum ml.bum m0.bum
INITIALISATION INITIALISATION INITIALISATION INITIALISATION

k

WaloOE e |[|[R]

We work on refinement animation similar to Brama

P
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Refinement Animation

Sketch of non-graphical display of state of refinement animation

PP
V4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORF

Conclusion

» Teach formal modelling how it is done

v

Teach incremental modelling

v

Teach how to improve a model in small increments

v

Teach making mistakes (how to profit from making mistakes)

v

Teach how to explain mistakes and to justify improvements

» Use a software tool like Rodin/ProB in class and in exercises

v

Getting a model right is not easy

P4 HEINRICH HEINE
UNIVERSITAT
DUSSELDORE

	Event-B
	Event-B in General Terms
	Event-B by Example

	Tool Support
	Making Mistakes
	Explaining Mistakes
	On-going Work and Conclusion

